Thứ Ba, 31 tháng 7, 2012

9 BÍ ẨN của VẬT LÝ



Chín bí ẩn lớn chưa có lời giải đáp trong ngành vật lý
Theo Life’s Little Mysteries
Natalie Wolchover
Tạp chí Tia Sáng -  04:30-31/07/2012 
http://tiasang.com.vn/Default.aspx?tabid=111&CategoryID=2&News=5443

Càng biết nhiều về vũ trụ,
càng nhiều câu hỏi được đặt ra.
Natalie Wolchover, phóng viên trụ cột của Tạp chíLife’s Little Mysteries đưa ra chín bí ấn lớn chưa được giải đáp trong ngành vật lý.
Năm 1900, nhà vật lý học người Anh Lord Kelvin được cho là đã tuyên bố “Giờ chẳng còn gì mới trong Vật lý để khám phá nữa. Tất cả những gì còn lại chỉ là phép đo chính xác hơn mà thôi”. Trong vòng ba thập kỷ, cơ học lượng tử và thuyết tương đối của Anhxtanh đã tạo nên cuộc cách mạng trong lĩnh vực này. Ngày nay, không nhà vật lý nào dám khẳng định rằng kiến thức của nhân loại về lĩnh vực vật lý đã gần hoàn thiện. Ngược lại, mỗi khám phá mới có vẻ lại mở ra một Chiếc hộp Pandora  với những câu hỏi về vật lý thậm chí còn lớn hơn và sâu hơn.

Sự kiện các nhà khoa học mới đây đã phát hiện ra hạt Higgs, hay còn gọi là “Hạt của Chúa” đã khiến một số nhà vật lý một lần nữa đứng trước câu hỏi: còn gì để nghiên cứu ở ngành vật lý học?

Trước băn khoăn này, Natalie Wolchover, phóng viên trụ cột của Tạp chí Life’s Little Mysteries đã đưa ra 9 bí ấn lớn chưa được giải đáp trong ngành Vật lý.


9. Năng lượng tối là gì?

Cho dù các nhà vật lý thiên văn có thực hiện nhiều phép tính toán thì vũ trụ cũng không tăng thêm. Dù lực hấp dẫn đang hút vào trong kết cấu của vũ trụ trong không-thời gian–vũ trụ tiếp tục giãn nở càng nhanh hơn. Xét đến vấn đề này, các nhà vật lý thiên văn đã đưa ra đề xuất về một loại chất vô hình có thể chống lại lực hấp dẫn bằng cách đẩy rời không-thời gian. Họ gọi nó là năng lượng tối. Theo dạng thức được thừa nhận rộng rãi nhất của năng lượng tối, nó là một “hằng số vũ trụ”: một đặc tính vốn có của bản thân không gian, có “áp suất âm” tách rời không gian. Khi không gian mở rộng, có nhiều khoảng không được tạo ra, và theo đó có thể có nhiều năng lượng tối. Dựa trên tỉ lệ giãn nở quan sát được, các nhà khoa học biết rằng tổng của toàn bộ năng lượng tối phải chiếm hơn 70% tổng thể tích của vũ trụ. Nhưng chưa ai biết cách tìm được năng lượng tối.

8. Vật chất tối là gì?


Rõ ràng, khoảng 84% vật chất trong vũ trụ không hấp thụ hoặc phát ra ánh sáng. "Vật chất tối", như người ta vẫn gọi, không thể nhìn thấy trực tiếp được, và cũng chưa từng được phát hiện bằng các cách thức gián tiếp. Thay vào đó, sự tồn tại và các đặc tính của vật chất tối được suy ra từ các tác dụng lực hút trên vật chất hữu hình, vật được bức xạ và cấu trúc của vũ trụ. Vật chất mờ ảo này được cho là đã tràn ngập vùng ngoài của thiên hà, và có thể bao gồm “các hạt lớn tương tác yếu”, viết tắt là WIMP. Trên khắp thế giới, đã có một số dấu hiệu của WIMP được phát hiện, nhưng cho đến nay, chưa vật chất tối nào được tìm thấy.

7. Tại sao lại có mũi tên thời gian?

Thời gian trôi về phía trước do sự tăng lên của một đại lượng đặc trưng của vũ trụ gọi là “entropi”, được định nghĩa như là mức độ hỗn độn, và không có cách gì để thay đổi sự tăng lên entropi sau khi việc đó đã xảy ra. Thực tế entrôpi tăng lên là một vấn đề về logic. Số hạt sắp xếp lộn xộn nhiều hơn số hạt được sắp xếp theo trật tự, và khi mọi thứ thay đổi, chúng có xu hướng rơi vào sự lộn xộn. Nhưng câu hỏi đặt ra ở đây là, tại sao trong quá khứ số lượng entrôpi lại thấp như vậy? Hay nói cách khác, tại sao lúc đầu vũ trụ vẫn được sắp xếp theo trật tự khi một lượng lớn năng lượng bị nhồi vào với nhau trong một khoảng không gian nhỏ hẹp như vậy?

6. Có các vũ trụ song song không?


Tài liệu về vật lý thiên văn cho thấy không-thời gian có thể “phẳng”, chứ không cong, và do đó nó sẽ tồn tại mãi mãi. Nếu thế thì vùng mà chúng ta có thể thấy được (mà chúng ta nghĩ là “vũ trụ”) chỉ là một mảnh trong “đa vũ trụ hợp lại” rộng lớn vô định. Đồng thời, các luật cơ học lượng tử công bố rằng chỉ có một số lượng nhất định các hình dạng hạt có thể tồn tại trong mỗi mảnh vũ vụ (10^10^122 khả năng rõ ràng). Như vậy, với một số lượng vô hạn các mảnh vũ trụ thì sự sắp xếp các hạt trong vũ trụ bị buộc phải lặp lại – với số lần vô hạn. Điều này có nghĩa là có một số lượng vô hạn các vũ trụ tồn tại song song: các mảnh vũ trụ giống y hệt vũ trụ của chúng ta (trong đó cũng có một người giống y hệt bạn), cũng có các mảnh chỉ khác vũ trụ của chúng ta ở vị trí của một hạt, có các mảnh khác vũ trụ của chúng ta ở vị trí của hai hạt, v.v và có các mảnh khác hoàn toàn so với vũ trụ của chúng ta.

Có gì sai với phép logic này không, hay kết quả kỳ lạ của phép logic này là đúng? Và nếu đúng thì làm sao chúng ta có thể phát hiện ra sự tồn tại của các vũ trụ song song?

5. Tại sao có nhiều vật chất hơn phản vật chất?

Câu hỏi tại sao có nhiều vật chất hơn phản vật chất (anh em song sinh có điện tích và spin hoàn toàn ngược với vật chất) thực ra là câu hỏi tại sao có sự tồn tại của vạn vật. Có giả định rằng, vũ trụ sắp xếp vật chất và phi vật chất một cách đối xứng, và như vậy tại thời điểm xảy ra vụ nổ Big Bang, một lượng vật chất và phi vật chất bằng nhau sẽ được sản sinh. Nhưng nếu điều đó xảy ra thì đã dẫn đến hiện tượng hủy diệt cả hai: Proton hủy các phản proton, các electron hủy các phản electron (pozitron), nơtron hủy các phản nơtron, v.v, để lại phía sau một biển photon mờ nhạt trong một dải các phi vật chất. Vì một lý do nào đó, có một lượng vật chất thừa ra không bị phá hủy, và thế là có nhiều vật chất hơn phản vật chất. Về vấn đề này, chưa có lời giải nào được chấp nhận.

4. Số phận của vũ trụ thế nào?


Số phận của vũ trụ phụ thuộc nhiều vào một hệ số với giá trị chưa biết Ω, một ước số của mật độ vật chất và năng lượng trong vũ trụ. Nếu Ω lớn hơn 1 thì không-thời gian sẽ bị “đóng lại” giống như bề mặt của một khối cầu khổng lồ. Nếu không có năng lượng tối thì vũ trụ cuối cùng cũng sẽ ngừng giản nở và thay vào đó lại bắt đầu co lại, cuối cùng là tự sụp đổ với một sự kiện gọi là Vụ Co Lớn (the “Big Crunch”). Nếu vũ trụ bị đóng lại nhưng có tồn tại năng lượng tối thì vũ trụ hình cầu sẽ giãn nở mãi mãi.

Ngoài ra, nếu Ω nhỏ hơn 1 thì hình dạng của không gian sẽ “mở” giống như bề mặt của cái yên ngựa. Trong trường hợp này, số phận cuối cùng của nó là một Vụ Rách Lớn (the “Big Rip”), tiếp theo là một Vụ Đóng Băng Lớn (the “Big Freeze”): đầu tiên, sự tăng tốc bên ngoài của vũ trụ sẽ xé toạc các thiên hà và các ngôi sao, để lại các vật chất lạnh lẽo và đơn độc. Tiếp theo, sự tăng tốc sẽ phát triển mạnh đến mức nó sẽ lấn át các tác động của các lực giữ nguyên tử gắn kết với nhau, và mọi thứ sẽ bị tách rời ra.

Nếu Ω bằng 1, vũ trụ sẽ phẳng, mở rộng giống một mặt phẳng vô định theo mọi hướng. Nếu không có năng lượng tối, thì vũ trụ phẳng đó sẽ giản nỡ mãi mãi nhưng với tốc độ giảm dần, tiệm cận trạng thái dừng lại. Nếu có năng lượng tối, vũ trụ phẳng cuối cùng sẽ trải qua quá trình giãn nở rất nhanh, dẫn đến Vụ Rách Lớn (the “Big Rip”).

Điều gì xảy ra sẽ xảy ra.

3. Bằng cách nào mà việc đo lường có thể khiến các hàm sóng lượng tử co lại?

Trong vùng kỳ lạ của các electron, photon và các hạt cơ bản khác, cơ học lượng tử là luật được áp dụng. Các hạt không hành xử giống những quả bóng nhỏ, mà giống các đợt sóng tràn qua một khu vực rộng lớn. Mỗi hạt được xác định bởi một “hàm sóng”, hoặc phân bố xác suất, tại đó cho thấy vị trí, vận tốc và các đặc tính khác mà nó có thể có, nhưng không phải giá trị xác định của các đặc tính đó. Hạt thực chất có một miền giá trị cho tất cả các đặc tính, cho đến khi bạn đo được một trong số các đặc tính đó bằng thực nghiệm – ví dụ như vị trí của nó mà tại đó hàm sóng của hạt “co lại” và nó chỉ nhận một vị trí.

Nhưng bằng cách nào và tại sao việc đo lường một hạt khiến hàm sóng của nó bị co lại, tạo ra thực tế cụ thể mà chúng ta thấy là đang tồn tại? Vấn đề này, vấn đề của sự đo lường, có vẻ là không phổ biến, mà sự hiểu biết của chúng ta về thực tế, hoặc nếu có tồn tại sự hiểu biết này đi chăng nữa, cũng chỉ xoay quanh câu trả lời cho câu hỏi này.

2. Lý thuyết dây có chính xác không?

Khi các nhà vật lý giả định tất cả các hạt cơ bản thực chất là các vòng lặp một chiều, hoặc ‘các dây’, mỗi dây dao động ở một tần số khác nhau, thì môn vật lý học trở nên dễ dàng hơn. Lý thuyết dây cho phép các nhà vật lý hài hòa các luật điều khiển các hạt, gọi là cơ học lượng tử, với các luật điều khiển không-thời gian, gọi là lý thuyết tương đối tổng quát, và để hợp nhất bốn lực cơ bản của tự nhiên thành một khung đơn. Nhưng vấn đề là, lý thuyết dây chỉ có thể hoạt động trong một vũ trụ với 10 hoặc 11 chiều : 3 chiều không gian lớn, 6 hoặc b7 chiều không gian nén, và 1 chiều thời gian. Các chiều không gian nén – cũng như bản thân các dây rung động – bằng khoảng một tỷ phần một tỷ tỷ kích thước của một hạt nhân nguyên tử. Không có cách gì có thể phát hiện ra vật gì nhỏ đến thế, và vì thế không có cách gì để kiểm chứng xem lý thuyết dây có chính xác hay không.  
1. Liệu có trật tự trong sự hỗn loạn không?    


Các nhà vật lý không thể giải chính xác các hệ phương trình mô tả tính chất của chất lưu, từ nước đến không khí đến toàn bộ các chất lỏng và khí khác. Trên thực tế, người ta không thể biết được có thực sự tồn tại một nghiệm tổng quát của cái được gọi là các phương trình Navier-Stokes hay không, hoặc nếu có một phương trình như vậy, dù nó mô tả chất lưu ở mọi nơi, hoặc chứa các điểm vốn không thể nhận ra - được gọi là các điểm kỳ dị. Kết quả là, bản chất của sự hỗn loạn không được hiểu rõ ràng. Các nhà vật lý và các nhà toán học tự hỏi, phải chăng thời tiết chỉ đơn giản là khó dự đoán, hay vốn đã không thể dự đoán? Phải chăng sự hỗn loạn vượt ra ngoài những thuyết minh toán học, hay tất cả đều có nghĩa khi bạn giải quyết bằng toán học chính xác.

Hồng Việt biên dịch

(Vĩnh Thuận sưu tầm từ Tạp chí Tia Sáng - 31/7/2012)

Chủ Nhật, 29 tháng 7, 2012

TỰ XUẤT BẢN - Samizdat


Samizdat, từ bao giờ và như thế nào?
Thụy Anh
Tia sáng - 16/7/2012


“Quần đảo GULAG”, “Trại ung thư”,
“Tầng đầu địa ngục” của A. Solzhenitsyn
đều ra mắt lần đầu bằng hình thức
Samizdat. Trong ảnh: Tổng thống Putin
đến nhà riêng của A. Solzhenitsyn
để trao giải thưởng Nhà nước cho ông
ngày 12/7/2007
Cùng với những từ tiếng Nga khác như Perestroika (cải tổ),Glasnost (công khai), Samizdat (tự xuất bản) đã trở nên nổi tiếng khắp thế giới. Nhiều tác phẩm lớn của B. Pasternak, A. Solzhenitsyn, M.Bulgakov, O. Mandelshtam,… đều ra đời lần đầu bằng hình thức xuất bản này. Nhưng Samizdat không chỉ giới hạn ở các tác phẩm văn học, mà còn mở rộng ra những công trình nghiên cứu về kinh tế, chính trị, triết học, tạo ra ảnh hưởng không nhỏ.

Người ta vẫn hiểu nôm na rằng, sami (tự) – zdat (xuất bản) – là các tác giả tự xuất bản tác phẩm của mình, mà hầu hết là những tác phẩm bị cấm hoặc có những nội dung không phù hợp với những tiêu chí chính trị, xã hội và cả thẩm mỹ mà các cơ quan hữu trách đã đặt ra. 


Thế nhưng, theo Aleksandr Daniel – nhà nghiên cứu lịch sử văn học Nga, Samizdat là thuật ngữ ám chỉ phương cách tồn tại của tác phẩm/ấn phẩm chứ không phải nội dung của nó. Theo ông, đó là cách thức tồn tại của những văn bản chưa được qua kiểm duyệt nhà nước và lượng bản lưu hành trong dân chúng không thuộc quyền hoặc vượt quyền kiểm soát của tác giả. Nhiều trường hợp, có những tác phẩm được xuất bản chính thống sau một thời gian lại trở thành đối tượng của Samizdat, được đưa đến tay người đọc bằng cách chép tay, đánh máy từ bản gốc như rất nhiều truyện ngắn của Solzhenitsyn. Ngược lại, có những tác phẩm Samizdat về sau lại là cơ sở làm nên những ấn phẩm qua kiểm duyệt như bản dịch tiếng Nga của tiểu thuyết “Chuông nguyện hồn ai” (Hemingway).


Nếu hiểu với nghĩa “phương cách tồn tại” của văn bản thì có thể nói, Samizdat đã xuất hiện từ lâu lắm rồi, chỉ có chưa ai gọi phương cách ấy bằng cái tên này mà thôi. Từ những thế kỷ trước, ở nước Nga, người ta đã biết đến hình thức xuất bản tự lực thế này, truyền tay nhau những ấn phẩm không được in ấn chính thức. Chẳng phải bài thơ nổi tiếng “Cái chết của nhà thơ” mà Lermontov viết sau ngày mất của Pushkin đã được lưu truyền trong dân chúng qua hàng vạn bản chép tay ngay trong năm 1837 đấy sao? 


Rất nhiều ấn phẩm khác cũng tìm cách để đến được với độc giả trước khi ra mắt một cách toàn vẹn, đầy đủ và chính thức. 


Từ những tập thơ tự đánh máy và dập ghim…


Samizdat chỉ được coi như một thuật ngữ xã hội với ý nghĩa “tự xuất bản văn chương của mình” vào những năm 40 của thế kỷ trước, do nhà thơ Nikolai Glazkov (1919-1979) sử dụng khi ông trân trọng đề từ này trên trang bìa những tập thơ tự đánh máy tự dập ghim của mình. Thơ và truyện của nhà thơ người Moscow ấy chưa từng được in ấn khi ông còn sống. Chính vì thế, ông phải nghĩ ra một cách “xuất bản” riêng – Samizdat, để tặng bạn bè, người thân và những người yêu thích thơ mình. Các đồng nghiệp hoan nghênh ông và nhiều người bắt đầu làm theo. 


Từ cuối những năm 50, Samizdat không chỉ là cơ chế hợp lý để phổ biến những văn bản bị cấm hoặc bị kiểm duyệt. Samizdat trở thành công cụ của “nền văn hóa thứ hai” – nghĩa là một tầng văn hóa bất chấp kiểm duyệt. Ở đây – văn bản không được trình kiểm duyệt chứ không phải là văn bản bị cắt cúp hoặc bị loại sau khi kiểm duyệt. Các nhà văn, nhà thơ rất thú vị với hình thức này. 


Cũng theo Aleksandr Daniel, người mở đầu triệt để cho phong trào này là một nhà báo của tờ “Đoàn viên thanh niên cộng sản Moscow” Aleksandr Ginzburg. Anh đứng ra đánh máy cả một tập thơ nhiều tác giả, những thi phẩm chưa được thông qua kiểm duyệt và cũng chưa ai nghĩ đưa ra xin giấy phép xuất bản. Thế là hình thành một hình thức tự xuất bản đúng nghĩa. Ginzburg sau này còn làm thêm được ba ấn phẩm như thế trước khi bị buộc phải ngừng hoạt động. Thời đó, mỗi một ấn phẩm đánh máy thường chỉ có từ một đến tám hoặc cùng lắm là 12 ấn bản. 


… đến một phong trào lớn


Máy photocopy xuất hiện vào cuối những năm 70, và lúc đó bắt đầu một thời kỳ mới của Samizdat. Tuy nhiên, việc “thị trường hóa” các ấn phẩm Samizdat chỉ được nói đến vào cuối những năm 80. 


Rất nhiều tác phẩm có giá trị được ra đời ở Nga lần đầu bằng hình thức Samizdat: “Bác sĩ Zhivago” của B. Pasternak; “Quần đảo GULAG”, “Trại ung thư”, “Tầng đầu địa ngục” của A. Solzhenitsyn; “Cuộc đời và những cuộc phiêu lưu của anh lính Ivan Chonkin” của V. Voinovich; “Ngôi nhà hoang” của L.Chukhovskaya; “Nghệ nhân và Margarita” của M.Bulgakov; thơ của I. Brodsky, O. Mandelshtam, A. Galich; nhiều ấn phẩm khác của các tác giả M. Svetaeva, A.Belyi, A. Akhmatova, Daniil Kharms… Những tác giả này về sau, đặc biệt là từ sau Perestroika, đều được xuất bản chính thống và được vinh danh một cách xứng đáng. Chẳng hạn, như A. Solzhenitsyn được tặng Giải thưởng Nhà nước vì những đóng góp xuất sắc cho hoạt động nhân đạo và Tổng thống Putin đã đến tận nhà riêng của ông ở ngoại ô Moscow để trao giải, đồng thời ca ngợi ông là người “dâng hiến cả cuộc đời cho nước Nga”.


Trong một lần trả lời phỏng vấn báo chí, nhà nghiên cứu Aleksandr Daniel kể một câu chuyện khá thú vị về trường hợp của nhà thơ L.N. Gumiliov (chồng cũ của nữ sĩ Akhmatova). Đầu những năm 70, Gumiliov là một trong những tác giả rất “hot” và luôn được xuất bản, thậm chí không bị cắt cúp lấy một dấu chấm. Thế nhưng, tác phẩm chính của ông là “Khởi nguyên nhân chủng học hệ sinh thái Trái đất” lại không được in. Bấy giờ, nhà thơ đưa tác phẩm đi “tự xuất bản” nhưng không phát tán mà khôn khéo gửi cho ban lưu trữ Viện Thông tin khoa học kỹ thuật Toàn Nga, như một bản thảo lưu trữ. Theo luật thì bản thảo này có thể được mượn để copy nếu trả tiền. Ngày đó, mỗi lần xin một bản copy của tác phẩm này, người đọc phải trả 30 Rúp, là một số tiền rất lớn. Như vậy, lưu trữ bản thảo trong Viện Thông tin khoa học và kỹ thuật toàn Nga hóa ra cũng là một phương cách Samizdat


Ngoài ra, người ta dùng thuật ngữ Samizdat cho cả những tác phẩm âm nhạc được tự thu tự phát trong dân hoặc những bài thơ được ngâm và thu băng catssette của Galich, Vysotsky, Okudzhavy – những tác giả, vì nhiều lý do khó hiểu hoặc thậm chí không vì lý do gì đã không được nhà nước xuất bản tác phẩm trong một thời gian dài. Vysotsky là một ví dụ. Sinh thời, người nghệ sĩ “của toàn dân” này chưa từng được in ấn xuất bản một tác phẩm nào, nhưng khắp nơi người ta vẫn đọc anh, hát anh, đương nhiên, qua hình thức “tự xuất bản”. Những ấn phẩm thơ và âm nhạc của Vysotsky chỉ được xuất bản chính thống sau khi anh đã nằm xuống, bấy giờ thậm chí còn đoạt nhiều giải thưởng.


Samizdat phát triển rộng rãi vào những năm 70, và đương nhiên không chỉ giới hạn ở các tác phẩm văn học hay âm nhạc. Theo thông tin của KGB, trong khoảng từ 1965 đến 1970, có hơn 400 công trình nghiên cứu, bài viết về kinh tế, chính trị, triết học được in ấn theo hình thức Samizdat, có ảnh hưởng không nhỏ tới người đọc, tạo nhiều phản biện xã hội đối với các chính sách đối nội và đối ngoại của nhà nước. 


Tuy vậy, cũng chớ đánh đồng Samizdat với hoạt động của những người chống đối nhà nước. Nhiều tác phẩm văn học được các tác giả lựa chọn xuất bản theo phương thức này đôi khi chỉ vì lượng in ấn ít, không muốn chờ đợi thời gian duyệt bản thảo, hay cả những vấn đề khúc mắc về mặt nghệ thuật nữa. Nhiều kiệt tác kinh điển lâu không được tái bản, cũng được dân chúng đón nhận thông qua Samizdat bằng những chiếc máy chữ cũ kỹ hoặc, thậm chí, chép tay. Thơ Svetaeva, Mandelshtam, Gumiliov đã đến với bạn đọc bằng cách đó… Cũng chính vì thế mà thời ấy, thuật ngữ Samizdat được dùng thông dụng và thân thuộc đến nỗi người ta hay kể câu chuyện tiếu lâm như thế này: “Bà kỳ cạch đánh máy tiểu thuyết “Chiến tranh và hòa bình” của Tolstoy cho cháu, và cháu của bà chẳng đọc gì ngoài các tác phẩm Samizdat kiểu ấy”. Một chi tiết hài hước nữa là, theo nhà nghiên cứu vodka Aleksandr Nikishin, trong thời kỳ Liên Xô đấu tranh với nạn uống rượu và say xỉn thì Samizdat là từ lóng để người ta nhắc đến việc nấu rượu lậu!


Cho đến khi phong trào Samizdat đã được phổ biến rộng rãi thì những tạp chí Samizdat ra đời. Ngoài một vài ấn phẩm văn học, nổi nhất và được chờ đón nhất là những tạp chí về nhạc Rock như tạp chí “Roxy”, “Ukho” (Cái tai), “Zerkalo” (Tấm gương)… được đánh máy và phát hành rộng rãi. Những ấn phẩm tương tự được bán khắp nơi, đặc biệt là trên các chuyến tàu xa và được đón nhận nồng nhiệt! 


Trong tiểu thuyết tự truyện “Và gió đã lại về…”, nhà thơ Vladimir Bukovsky định nghĩa về Samizdatthế này: “Tôi tự sáng tác, tự biên tập, tự kiểm duyệt, tự xuất bản, tự phát hành và tự… trả giá cho những việc này”. Quả vậy, ban đầu, một thời gian dài nhà nước theo dõi khá sát sao những hoạt động của Samizdat. Tài liệu lưu trữ về những vụ việc này nằm chất đống trong hồ sơ của KGB. Những người phát tán các tác phẩm Samizdat có thể bị buộc tội không chỉ vì nội dung ấn phẩm chưa qua kiểm duyệt mà còn vì “sự lạm dụng tài sản xã hội chủ nghĩa” – những giấy, những mực phục vụ việc tự xuất bản này. Cho đến cuối những năm 80 thì người ta gần như không còn quan tâm nhiều nữa. Các hoạt động phát hành, phân phối ấn phẩm gần như được công khai, gửi cả qua bưu điện đến cho người có nhu cầu. Đầu những năm 90, Samizdat đã tiến đến bước phát triển mới – là các ấn phẩm được in ấn chứ không phải đánh máy, photocopy hay chép tay nữa. 


Theo Aleksandr Daniel, hiện giờ, trên thế giới có ba nơi lưu trữ các hồ sơ Samizdat thời Xô Viết lớn nhất. Đó là Đài Tự do tại Đại học Tổng hợp Trung Âu ở Budapest (Hungary), Trung tâm Memorial (Tưởng niệm) ở Nga, và Viện Nghiên cứu Đông Âu tại Đại học Bremen (Đức).

Và Samizdat thời @



Thời bây giờ, hình thức tự xuất bản Samizdat ấy có lẽ chính là thông qua Internet, cái mà vẫn được gọi nôm na là “văn học mạng”. Các tạp chí online được cập nhật thường xuyên và hỗ trợ thông tin cho bạn đọc rất kịp thời, đầy đủ, khoa học. Các tác phẩm chỉ cần được một nhóm điều hành viên, cũng là những người viết kiểm duyệt theo những tiêu chí riêng của website. Và đây cũng là một trong những xu hướng xuất bản toàn cầu - xuất bản online trước khi đến với xuất bản sách giấy. 

-----------------------------------------------------------
Xin xem thêm bài "Xuất bản phá cách và các vấn đề của nó" : 

----------------------------------------------------------
(Vĩnh Thuận sưu tầm - 30/7/2012)

GS Pham Xuan YEM viet ve hat HIGGS


Hạt Higgs, lực cơ bản thứ năm ?
Phạm Xuân Yêm
Tap chi Tia Sang - 22/7/2012


Nếu hiện tượng vừa khám phá ở CERN được kiểm chứng sau này phù hợp với những đặc tính của boson Higgs (spin 0, những kiểu phân rã và sản xuất đúng như tiên đoán của Mô Hình Chuẩn) thì chúng ta đang chứng kiến một chương cũ sắp khép và một trang sử mới đang ló rạng trong vật lý. 



                   Chín năm đốt đuốc soi rừng
                                                                                                      (Nguyễn Bính, 1956)


Tóm lược


Hầu như đồng thời vào hè năm 1964, sáu nhà vật lý độc lập với nhau cùng đề xuất một cơ chế mang khối lượng cho vạn vật. Cơ chế BEH (Brout, Englert, Higgs, coi phụ chú 5) này là nền tảng của Mô Hình Chuẩn, một lý thuyết diễn tả nhất quán và chính xác ba lực cơ bản của Tự nhiên: điện từ, lực mạnh và lực yếu của hạt nhân nguyên tử. Cùng với lực hấp dẫn (diễn tả bởi thuyết Tương đối rộng) chúng hợp thành bốn lực cơ bản chi phối cách vận hành và cấu trúc của vạn vật. Để chứng tỏ cơ chế BEH không chỉ là một ý tưởng thuần lý thuyết mà trái lại có thể kiểm chứng bởi thực nghiệm, điều tối quan trọng trong khoa học, riêng P. Higgs đã đề xuất là phải hiện hữu một hạt cơ bản vô hướng (spin 0). S.Weinberg gọi hạt này là boson Higgs mà CERN vừa tìm thấy dấu vết rất khả tin ngày 04/07/2012.

Hiện tượng lịch sử này các nhà vật lý hồi hộp đón chờ từ năm 1984 khi Trung tâm Âu châu Nghiên cứu Hạt nhân Nguyên tử  (CERN) quyết định xây dựng máy gia tốc khổng lồ  LHC [1] có năng lượng cao nhất thế giới  để săn tìm hạt Higgs. Nó mở đầu một chương mới trong vật lý vì đây là lần đầu con người khám phá ra một lực mới lạ, lực mang khối lượng cho vật chất, coi như lực cơ bản thứ năm của Tự nhiên, bên cạnh bốn lực cơ bản quen thuộc nói ở trên. Nó gợi ra cách tiếp cận mới về khối lượng của vật chất, khác với quan điểm cố hữu coi khối lượng (hay năng lượng) là cái gì cho trước bởi Tự nhiên mà không ai hiểu nguồn gốc sâu xa. Theo Mô Hình Chuẩn, khối lượng của vật chất được tạo ra bởi sự tương tác của chúng với trường Higgs tràn đầy trong chân không của vũ trụ từ thủa nguyên thủy Big Bang. Khởi đầu tất cả đều không có khối lượng, do tương tác với trường Higgs mà vật chất mang khối lượng, nặng hay nhẹ tùy theo cường độ tương tác lớn hay nhỏ của chúng, càng tác động mạnh vật chất càng có khối lượng lớn.
Nguyên nhân nào thúc đẩy sáu nhà vật lý sáng tạo ra cơ chế BEH? Khởi đầu là sự tìm hiểu tại sao hạt ánh sáng (photon ) không khối lượng lại trở thành có khối lượng khi nó di chuyển  trong các vật liệu siêu dẫn. Nguyên lý “Đối xứng Chuẩn” (local gauge symmetry), trụ cột chi phối toàn diện bốn định luật cơ bản nói ở trên, bó buộc photon phải có khối lượng bằng 0, điều phù hợp với nguyên lý bất định Heisenberg theo đó khối lượng của một vật tỷ lệ nghịch với tầm truyền của nó (phụ chú 6). Vì đối xứng chuẩn bị phá vỡ một cách tự phát (spontaneouly broken) trong hiện tượng siêu dẫn khiến cho photon như mang một khối lượng. Vì có khối lượng nên nó chỉ có thể di chuyển trong một khoảng cách ngắn nhất định, khác với bản tính tự tại của sóng điện từ có thể truyền đi vô hạn. Bức tường ngăn chặn photon di chuyển trong vật liệu siêu dẫn chính là muôn ngàn cặp Cooper liên kết hai electron có spin đối nghịch và như vậy mang spin 0. Vì mang spin 0 nên các cặp này có thể hoà đồng với nhau như một thể ngưng tụ Bose-Einstein và vận hành như một dòng chảy của muôn ngàn điện tích và trở nên siêu dẫn.



Trong cơ chế BEH, cặp Cooper mang khối lượng cho photon được thay thế bởi trường Higgs để mang khối lượng cho hai boson chuẩn  W, Z của lực hạt nhân yếu.
Đối xứng chuẩn và  sự phá vỡ tự phát của nó đóng vai trò chủ yếu của lực cơ bản thứ năm mà sự khám phá ra hạt Higgs là một bước ngoặt lịch sử.

1-Vài điều về Đối xứng


Trong tiến trình khám phá các định luật khoa học, nhiều nhà nghiên cứu lấy nguồn cảm hứng trong cái đẹp cân đối hài hoà của thiên nhiên để quan sát, tìm tòi, suy luận, sáng tạo. Cái đẹp đó có thể chủ quan trong nghệ thuật, văn chương, hội họa, âm nhạc, nhưng trong khoa học  nó khách quan, định lượng và mang tên gọi đối xứng, với dụng cụ toán học là  nhóm đối xứng [2] để phân tích, xếp đặt thứ tự các trạng thái của hệ thống, tiên đoán những hậu quả.


Nguyên lý đối xứng đóng một vai trò quan trọng trong sự khám phá các định luật vận hành và cấu trúc của Thiên nhiên, đặc biệt của vật lý hạt cơ bản.
Đối xứng được định nghĩa theo nhà toán lý học Hermann Weyl (1885-1955) như sau: một định luật khoa học mang một tính đối xứng nếu nó biểu hiện không hề thay đổi khi ta tác động lên nó bởi một phép biến chuyển. Hình cầu là một minh hoạ rõ rệt nhất của một vật thể đối xứng: phép quay trong không gian ba chiều với bất kỳ một góc nào chung quanh tâm của hình cầu không làm nó thay đổi hình dạng. Nói cách khác, đường kính của hình cầu là một bất biến của phép quay chung quanh tâm của nó.



Có một định lý phổ quát và phong phú - khám phá bởi nhà toán học nữ Emmy Noether năm 1918 - theo đó khi một tính đối xứng chi phối một hệ thống vật lý nào đó thì phải có một định luật bảo toàn kèm theo, và như vậy phải có một đại lượng bất biến tương ứng.
Thí dụ định luật bảo toàn năng lượng là hệ quả tất yếu của tính đối xứng bởi sự chuyển đổi tịnh tiến của thời gian (một thí nghiệm thực hiện hôm nay, tháng trước hay tuần sau, trong cùng một điều kiện, cũng đều giống hệt nhau). Tính đối xứng bởi sự chuyển đổi tịnh tiến của không gian (thí nghiệm thực hiện trong cùng một điều kiện tại Hà Nội, Bình Nhưỡng hay La Habana đều như nhau) cho ta định luật bảo toàn xung lượng. Hai định luật bảo toàn này, theo thứ tự, diễn tả tính đồng nhất của thời gian (lúc nào cũng thế) và không gian (đâu cũng vậy). Ngoài ra còn có đối xứng bởi phép quay chung quanh một trục, nó đưa đến định luật bảo toàn xung lượng góc. Định luật này diễn tả tính đẳng hướng của không gian (bất kỳ chiều hướng nào cũng tương đương như nhau). Đồng nhất và Đẳng hướng là hai đối xứng cơ bản của không gian và thời gian.
Mỗi định luật cơ bản vật lý thường tự thân nó tuân thủ một phép đối xứng nào đó mà nhà nghiên cứu cần tìm kiếm ra. Thí dụ định luật điện từ, gói ghém trong bốn phương trình Maxwell, tuân theo phép đối xứng chuẩn (local gauge symmetry), mà hậu quả là sự bảo toàn điện tích. Điện tích chẳng bao giờ mất đi hay sinh ra cả, nó bất biến bởi phép biến chuyển chuẩn (gauge transformation). Danh từ chuẩn, cũng do Hermann Weyl đưa ra, hàm ý là không có một tiêu chuẩn, mẫu thước tuyệt đối nào trong cách tính toán đo lường giá trị nội tại của các đại lượng khoa học. Mét hay yard, lít hay gallon, đồng hay dollar đều tương đương cả, đó chỉ là ước lệ của con người. Bất biến bởi đối xứng chuẩn cũng như giá trị tự tại của một đại lượng, nó  không phụ  thuộc vào phương cách, đơn vị mà ta dùng để đo lường, tính toán.



Đối xứng chuẩn đóng một vai trò cực kỳ quan trọng trong tiến trình khám phá của vật lý, khởi đầu trong điện từ và sau đó lan rộng sang nhiều ngành như khoa học vật liệu, vật lý chất đông đặc ngưng tụ, vật lý hạt, vũ trụ thiên văn kèm theo những ứng dụng kỳ diệu trong công nghệ liên đới đến những ngành này [3]. 

Vậy đối xứng chuẩn là gì ? Ai trong chúng ta khi làm quen với cơ học lượng tử đều biết rằng bình phương độ  lớn của hàm số sóng của electron |Ψ(x)|2 cho ta xác suất trạng thái của nó. Ta thấy ngay phép biến chuyển chuẩn  với bất kỳ một hàm thực α(x) nào đều không làm thay đổi |Ψ(x)|2. Trong các hàm Ψ(x) và α(x), đối số x chỉ định tứ-vectơ  của không-thời gian bốn chiều. Cũng vậy phương trình Maxwell của photon - diễn tả bởi tứ-vectơ điện thế  - không hề thay đổi bởi phép biến chuyển chuẩn  , ta thêm vào hay bớt đi một đạo hàm của bất kỳ hàm α(x) nào cũng không làm thay đổi phương trình Maxwell. Chính vì vậy mà đối xứng chuẩn chi phối toàn diện tương tác điện từ giữa electron với photon.
Cụ thể ta mường tượng đối xứng này như sau: điện thế của trái đất là một triệu volt và hai cực điện trong nhà là 1000000 volt và 1000220 volt, nhưng máy của chúng ta chạy với 220 volt không hề trục trặc mặc dầu hàng triệu volt điện thế của quả đất. Vì α(x) là bất kỳ hàm gì, nghĩa là có thể có muôn ngàn điện thế tùy tiện khác nhau ở mọi nơi trong hoàn vũ bao la, nhưng định luật chi phối sự vận hành của chúng phải được điều chỉnh ra sao để cho ta một trường điện từ duy nhất. Sự  vận hành trong máy của chúng ta mang lên các thiên thể xa xăm không bị thay đổi bởi điện thế tuỳ tiện lớn hay nhỏ trên đó, điện tích của electron bao giờ cũng bất biến, ở đây hay ở đó, lực điện từ trong máy của chúng ta cũng là lực điện từ trên các thiên thể.

Đó là ý nghĩa vật lý của đối xứng chuẩn, nó tác động lên cả bốn lực cơ bản: hấp dẫn, mạnh, điện-từ, yếu.


Theo thuyết tương đối rộng (luật hấp dẫn), mọi người quan sát bất kể họ vận chuyển ra sao đều bình đẳng như nhau, người di chuyển với gia tốc cũng có thể nói họ đứng yên vì họ có thể thay thế lực mà họ bị áp đặt lên bằng lực hấp dẫn mà họ bị đặt vào. Sự tương đương giữa gia tốc và trọng lực có thể minh họa qua hình ảnh quen thuộc của phi hành gia lơ lửng đứng yên trong hỏa tiễn bay với gia tốc lớn. Nó phản ánh ý tưởng mà Einstein coi như mãn nguyện nhất trong đời ông: “một người rớt từ trên cao xuống không cảm thấy sức nặng của mình”. Theo nghĩa đó, lực hấp dẫn tuân thủ một đối xứng chuẩn, nó bảo đảm rằng mọi hệ quy chiếu đều tương đương với nhau.


Đối xứng chuẩn khẳng định tính bất biến của định luật điện từ trong những phép chuyển dời của điện tích đi từ không-thời điểm này đến không-thời điểm kia.


Cũng thế, đối với lực mạnh của hạt nhân nguyên tử thì hai hạt proton và neutron đều hoàn toàn bình đẳng như nhau, định luật tương tác mạnh không thay đổi bởi sự hoán chuyển proton ↔ neutron ở bất kỳ không-thời điểm nào.


Và đây là điểm cốt lõi: Sự đối xứng bình đẳng của mọi hệ quy chiếu đòi hỏi phải có luật hấp dẫn, hơn nữa nó còn xác định được luật hấp dẫn là gì dưới dạng toán học qua phương trình  Einstein của thuyết tương đối rộng.


Cũng vậy, lực mạnh của hạt nhân nguyên tử không phụ thuộc vào sự hoán chuyển proton ↔ neutron. Tính đối xứng giữa proton ↔ neutron đòi hỏi tương tác mạnh phải được diễn tả dưới dạng của một phương trình cụ thể. C. N.Yang cùng đồng nghiệp trẻ R. Mills bàn luận về sự bất biến của lực mạnh dưới sự hoán chuyển proton ↔ neutron (nhóm đối xứng SU(2) của toán học) và tìm ra phương trình tương tác đáp ứng đối xứng chuẩn này. Công trình phong phú đó mang tên lý thuyết chuẩn Yang-Mills.


Sắc động lực học lượng tử (Quantum Chromodynamics, QCD) là định luật đáp ứng phép đối xứng sắc tích(color charge) của quark, nghĩa là bất kỳ các dịch chuyển ra sao trong không-thời gian của sắc tích đều không làm thay đổi tương tác của quark.

Một hậu quả độc đáo của lý thuyết chuẩn Yang-Mills nói chung (và của QCD nói riêng), là các boson chuẩn phải trực tiếp tác động giữa chúng với nhau, khác hẳn với photon (boson chuẩn của điện từ) không có tương tác trực tiếp này. Chính sự tác động trực tiếp với nhau giữa các gluon (boson chuẩn của QCD) là gốc nguồn của tính chất "tự do tiệm tiến" theo đó lực mạnh giảm đi khi quark xích lại gần nhau và do đó tăng lên khi chúng bị tách xa nhau. Càng đẩy chúng ra xa để tách rời chúng thì lực gắn kết chúng lại càng mạnh hơn lên để kéo giữ chúng lại, điều trái ngược với lực Coulomb của điện từ  bị giảm đi theo bình phương khoảng cách của hai điện tích. Quark mãi mãi bị cầm tù, chúng không sao thoát khỏi ra ngoài hadron để lộ mặt, và tính chất "tự do tiệm tiến” vinh tặng D. J. Gross, H. D. Politzer và F. Wilczek. giải Nobel 2004.



Đặc điểm cần nhấn mạnh của đối xứng chuẩn là nó đòi hỏi các boson chuẩn có spin 1 (gauge boson)  - làm trung gian sứ giả cho những fermion (như quark và lepton) tương tác với nhau  - phải không có khối lượng. Photon hay gluon là thí dụ của boson chuẩn không có khối lượng.

2-   Hạt cơ bản và Mô Hình Chuẩn

Khi con người xây dựng được một hệ thống nghiêm túc của những ý tưởng và phương pháp suy luận chính xác, nhất quán cũng như những ngôn từ tương xứng để diễn tả và giải thích thế giới bên ngoài, thì theo nghĩa đó họ đã tạo dựng nên một thực tại thiên nhiên mà hạt cơ bản và vũ trụ là thí dụ điển hình về cái mà chúng ta hiểu biết về hai thái cực vô cùng nhỏ cũng như vô cùng lớn đó.


Hạt cơ bản (viên gạch vi mô tận cùng của vật chất, không sao chia cắt nổi) - mà con người tạo dựng nên - không phải là duy nhất, sự hiểu biết về chúng phát triển tùy theo thời đại và các nền văn hóa.


Hết rồi thời xa xưa khi kim, mộc, thủy, hỏa, thổ là năm thành phần sơ đẳng cốt lõi của vật chất, chỉ mới đầu thế kỷ 20 thôi mà phân tử hãy còn được coi là hạt sơ cấp tận cùng của vật chất. Ngày nay chúng ta biết phân tử là tập hợp của nhiều nguyên tử khác nhau liên kết bởi electron ngoại vi, mà mỗi nguyên tử lại là hạt nhân của nó thu hút những electron dao động chung quanh bởi lực điện từ mà photon là sứ giả nối kết, rồi hạt nhân nguyên tử cũng lại do proton cùng neutron gắn với nhau mà thành, sau hết proton và neutron cũng chỉ là trạng thái liên kết của các quark u  và  d  qua trao đổi gluon của lực hạt nhân mạnh.


Cứ thế, như những con mẫu búp bê Nga liên hồi chứa đựng nhau, chuỗi dài của những hạt cơ bản đi từ phân tử đến quark là cả một quá trình sáng tạo, khám phá bền bỉ khi lên lúc xuống, lý thuyết cùng thực nghiệm chặt chẽ đan xen.

Theo sự hiểu biết hiện đại thì hạt cơ bản là quark và lepton, chúng là những viên gạch sơ đẳng tận cùng để cấu tạo nên vật chất bất động hay sinh động ít nhất là trên Trái đất, hệ Mặt trời.

Hiện tình của các hạt cơ bản được tóm tắt trong sơ đồ Hình 1, chúng gồm có hai phần: mười hai hạt có 
spin [4] ½ như  quark và lepton cùng bốn boson chuẩn có spin 1 như photon , gluon g, hai boson Z, W của lực yếu.  

Có sáu loại quark mang ký hiệu (up), (down),  (strange), (charm), (top), (bottom), sáu loại lepton bao gồm ba hạt e (electron), μ (muon), τ  (tauon) mang điện tích âm -e, và ba hạt neutrino 
ve
vμvτ trung hòa điện tích, theo thứ tự ba hạt neutrino này bao giờ cũng sánh đôi từng cặp với ba hạt electron, muon, tauon trong tương tác.

Sự cân bằng trong thiên nhiên về số lượng: sáu loại quark và sáu loại lepton không tình cờ mà là hậu quả sâu sắc (nhưng khá kỹ thuật chuyên môn) của đối xứng chuẩn trong lý thuyết trường lượng tử.


Chỉ có bốn lực cơ bản chi phối các tương tác của vật chất, đó là  hấp dẫn, điện từ và lực hạt nhân mạnh, yếu. Ba tương tác "phi hấp dẫn": mạnh, yếu, điện từ đã thành công trong việc được lượng tử hóa và tái chuẩn hóa (điều mà luật hấp dẫn của thuyết tương đối rộng không hay chưa làm được), chính vì vậy mà ba lực này diễn giải nhất quán và chính xác cách vận hành, tác động của các hạt vi mô cơ bản.


Lực mạnh gắn kết quark trong hạt nhân nguyên tử và làm cho vật chất vững bền nói chung.


Lực điện từ diễn tả electron tương tác với proton trong hạt nhân nguyên tử để tạo nên các nguyên tử và phân tử của các hóa chất trong bảng tuần hoàn Mendeleïev cũng như của các tế bào và gen sinh vật.


Lực yếu chi phối toàn diện sự vận hành của neutrino, làm cho một số hạt nhân nguyên tử phân rã và phát tán neutrino.


Tương tác mạnh (strong interaction) của các quark trao đổi gluon g giữa chúng được gọi là  Sắc động lực học lượng tử (Quantum Chromodynamics hay QCD), thuật ngữ vay mượn của Ðiện động lực học lượng tử(Quantum Electrodynamics hay QED) diễn tả tương tác điện từ của các hạt mang điện tích trao đổi photon
g giữa chúng.


Hai danh từ sắc và  điện để chỉ định hai tính chất lượng tử riêng biệt, sắc tích (color charge) của quark và điện tích (electric charge) của lepton e , μ , τ .  Cũng như thuật ngữ quark, thuật ngữ sắc dùng ở đây chỉ  là trò chơi chữ của các nhà vật lý hạt cơ bản, nó chẳng có chút liên hệ gì tới màu sắc xanh, đỏ của ngôn ngữ hàng ngày. Theo một định lý sâu sắc liên kết spin với phép thống kê của lý thuyết trường lượng tử, vì có spin ½ nên khi 3 quark kết hợp với nhau trong trạng thái căn bản để tạo thành proton thì quark phải mang 3 đặc tính lượng tử (mà ta gọi là 3 sắc tích) để tuân thủ phép thống kê Fermi-Dirac, theo đó các fermion (spin ½) không thể cùng ở chung một trạng thái (spin, năng lượng...), trái ngược với những boson (spin 0, 1)  tha hồ hoà đồng trong cùng một trạng thái.


Quark khác lepton ở chỗ là ngoài sắc tích ra, chúng cũng mang điện tích, nhưng điện tích của chúng không phải là con số nguyên 
- e như electron mà là + (⅔)e cho ba quark uct  và   -(⅓)cho ba quark ds,b.


Chính vì quark có cả sắc tích và điện tích nên chúng bị chi phối bởi cả ba lực: điện từ,  hạt nhân mạnh, hạt nhân yếu. Còn electron, muon, tauon vì mang điện tích nên bị tác động bởi hai lực: điện từ và yếu. Neutrino trung hòa điện tích nên chỉ bị chi phối duy nhất bởi lực yếu. Thuật ngữ yếu, thoạt nghe tưởng như nhỏ yếu ít tác động, nhưng thực ra nó chủ chốt điều hành sự tổng hợp nhiệt hạch trong các thiên thể, phát tán ra năng lượng cực kỳ cao mang ánh sáng cho bầu trời ban đêm cũng như phóng ra hàng muôn tỷ hạt neutrino từng giây đang xuyên qua da thịt chúng ta.


Quark cũng như lepton tương tác với nhau qua sự trao đổi các boson chuẩn. Boson chuẩn của lực mạnh là gluon g, của lực điện từ là photon 
g, của lực yếu là hai boson WZ, chúng có vai trò làm trung gian nối kết và truyền tải thông tin để cho các viên gạch cơ bản quark và lepton tương tác với nhau.


Điều quan trọng đã nhấn mạnh ở cuối phần 1 là các boson chuẩn phải không có khối lượng, đó là trường hợp của photon và gluon, nhưng hai boson chuẩn WZ của lực yếu lại quá nặng.


Câu hỏi là  WZ  không thể là boson chuẩn ? như thế lực yếu không tuân thủ đối xứng chuẩn, một nguyên lý nền tảng vững chắc, nhất quán để tính toán, tiên đoán mọi hiện tượng?


Câu trả lời là có, giải đáp bởi cơ chế BEH (Brout, Englert, Higgs). Mô phỏng một hiện tượng khá phổ quát trong thiên nhiên gọi là sự Phá vỡ Tự phát tính Đối xứng (Spontaneous Breaking of Symmetry, SBS) mà người tiên phong mở đường là Y. Nambu, giải Nobel 2008,  
P. Higgs [5] và  đồng nghiệp sáng tạo ra cơ chế BEH mang khối lượng cho WZ và cả cho quark lẫn lepton, nói chung cho vật chất, và hơn nữa chứng minh là cơ chế này vẫn tuân thủ đối xứng chuẩn.

Ngoài ra, hai định luật cơ bản điện từ và hạt nhân yếu tuy có cường độ tương tác hiệu dụng quá khác biệt nhưng vì nhận thấy chúng có nhiều đặc tính chung nên S. Glashow, A.Salam và S. Weinberg (giải Nobel 1979) sử dụng cơ chế BEH để kết hợp lực điện từ và lực hạt nhân yếu trong một tương tác duy nhất mà Salam đặt tên là  điện-yếu (electroweak). Thành tựu tuyệt vời này gọi là Mô Hình Chuẩn (Standard Model) đã mang lại khoảng ba chục giải Nobel trong ba chục năm gần đây. Mô Hình Chuẩn tiên đoán nhiều hiện tượng và hạt mới lạ cũng như tính chất của chúng mà sau đó đều được thực nghiệm kiểm chứng với độ chính xác đáng kinh ngạc. Hãy tạm kể hạt 
Ω-, dòng trung tính của lực hạt nhân yếu, các quark charm, top, bottom, hai boson chuẩn W, Z, mới lạ hồi hộp nhất là hạt cơ bản vô hướng Higgs vừa được phát hiện.

 


Hình1: Sơ đồ các hạt cơ bản trong Mô Hình Chuẩn

Ở trung tâm của Hình 1, duy nhất boson Higgs mang màu xám nhạt như để nhắc nhở là hạt này tuy là nền tảng lý thuyết của Mô hình chuẩn nhưng lại chưa được thực nghiệm khẳng định, khác với màu hồng, xanh, tím của quark, lepton, boson chuẩn (Z, W, , g) đã được thực nghiệm xác nhận là hiện hữu. Rất có thể kể từ ngày mồng 4 tháng 7 năm 2012, màu xám của hạt Higgs sẽ rực rỡ ánh vàng vì hai nhóm thực nghiệm ATLAS và CMS ở CERN vừa tìm ra dấu vết nó trong máy gia tốc LHC.

3-  Sự phá vỡ tự phát của tính đối xứng


Ta cần phân biệt hai điều quan trọng khi bàn luận về tính đối xứng: một là định luật vật lý diễn tả bởi phương trình, hai là trạng thái của hệ thống vật lý diễn tả bởi nghiệm số của phương trình trên. Sự phá vỡ tự phát của tính đối xứng hàm nghĩa là định luật (hay phương trình) cơ bản mang một phép đối xứng nào đó, trong khi nghiệm số của phương trình ấy lại không có cái đối xứng nguyên thủy, tính đối xứng của hệ thống bị thu hẹp lại nhưng không mất đi.

Hãy lấy thí dụ cụ thể về định luật vạn vật hấp dẫn cổ điển Newton áp dụng vào hệ thống Mặt trời và Trái đất để minh hoạ. Định luật hấp dẫn tuân thủ phép đối xứng quay trong không gian ba chiều với bất kỳ một góc nào chung quanh Mặt trời, luật đó bảo cho ta là  quỹ đạo hình bầu dục của Trái đất có thể nằm trong bất kỳ một mặt phẳng xích đạo nào của quả cầu có tâm là Mặt trời.  Nhưng hệ thống Mặt trời và Trái đất, nghĩa là nghiệm số của phương trình hấp dẫn, chỉ chọn một quỹ đạo duy nhất trong muôn vàn quỹ đạo có thể.

Định luật thì có đối xứng quay trong không gian ba chiều của hình cầu, trong khi trạng thái thì chỉ có đối xứng quay bị thu hẹp lại trong không gian hai chiều của mặt phẳng. Nằm trên quỹ đạo phẳng đó ta có thể nhầm tưởng là tính đối xứng quay nói trên bị phá vỡ, nhưng thực ra không thế, nó chỉ bị che khuất trong mặt phẳng.

Tìm ra phương trình là một chuyện, nhưng giải phương trình để có nghiệm số thỏa mãn điều kiện ban đầu nào đó lại là một chuyện khác. Ở đây ta giới hạn điều kiện ban đầu là năng lượng cực tiểu và nghiệm số tương ứng gọi là trạng thái căn bản hay chân không. Do vật chất (và năng lượng) được đặt vào chân không nên mọi sự trở nên đa dạng, phức tạp trong vũ trụ. Vì được coi là trạng thái đối xứng hoàn hảo nhất, nó bất biến bởi mọi chuyển đổi và do đó ta có thể nghĩ  rằng chỉ có duy nhất một chân không (nơi vật chất vắng mặt). Nhưng có nhiều trường hợp không phải như vậy, có thể có muôn vàn trạng thái căn bản tương đương nhau, chẳng sao phân biệt, ta phải chọn cụ thể một trạng thái nhất định nào đó để xác định chân không. Tính đối xứng không bị phá vỡ trong toàn thể, nhưng về cục bộ thì nó bị che khuất trong chân không, đó là SBS minh họa bởi Hình 2.



Hình 2 Minh họa hiện tượng SBS: Thế giới hoàn toàn đối xứng chung quanh trục thẳng đứng, khi cậu nhỏ nhìn từ đỉnh cao chót (nhưng bấp bênh) của nón. Sàn dưới (trạng thái căn bản) vững chắc nhưng nghiêng xa trục thẳng đứng, đối xứng vẫn còn nhưng chỉ cục bộ đâu đó trong vìa nón thôi.

Hiện tượng SBS khá phổ biến trong vật lý mà vật liệu sắt-từ (kim loại sắt hay kền) là một thí dụ. Định luật cơ bản chi phối chất sắt-từ thì hoàn toàn đối xứng trong sự phân phối spin (coi như những la bàn nhỏ xíu) của các nguyên tử kền. Spin song song của chúng không có một chiều hướng nào giữ ưu thế trong toàn thể không gian ba chiều. Nhưng trong một thỏi nam châm của vật liệu sắt-từ, nghĩa là trong trạng thái căn bản của các nguyên tử kền, thì chiều spin song song của các nguyên tử này lại chỉ có một chiều nhất định bắc nam thôi, vậy trạng thái đó chỉ còn có một đối xứng thu hẹp trong mặt phẳng. 
Cũng vậy, siêu dẫn điện-từ minh họa hiện tượng SBS. Tính siêu dẫn của một số vật liệu ở nhiệt độ thấp là một đặc trưng của vật lý lượng tử, nó không có điện trở, vì thế nó trục xuất bất kỳ một điện trường lớn nhỏ ở ngoài áp đặt vào nó. Hơn nữa, để gần vật liệu siêu dẫn thì  thỏi nam châm bị đẩy ra ngoài, từ trường bị trục xuất ra khỏi vật liệu siêu dẫn, đó là hiệu ứng Meissner- Ochsenfeld. Hiệu ứng này có thể là cội nguồn cho xe lửa trong tương lai được nâng lên trên đường ray, không bị lực ma sát nên xe lửa chạy nhanh (phụ chú 3e). Như vậy vật liệu siêu dẫn ngăn chặn tầm truyền của trường điện từ, nó là một hệ thống trong đó photon chỉ có thể tác động trong một khoảng cách ngắn, khác với bản chất tự tại của sóng điện từ có thể truyền đi vô hạn. Khi chuyển động trong vật liệu siêu dẫn thì photon, boson chuẩn của điện từ, bị cản trở bởi một bức tường chắn và như vậy photon tác động giống như mang một khối lượng [6],  mặc dầu phương trình điện từ Maxwell của nó vẫn tuân theo đối xứng chuẩn.

Bức tường chắn đó trong thuyết siêu dẫn của J. Bardeen [7], L. N. Cooper và J. R. Schrieffer (BCS), giải Nobel 1972, là trạng thái căn bản của muôn ngàn cặp Cooper, cặp liên kết hai electron có spin đối nghịch và như vậy cặp này mang spin 0. Mỗi cặp Cooper mang điện tích -2e nhưng vì có spin 0 nên những cặp này có thể hoà đồng chung sống tựa như một đông tụ Bose-Einstein. Mỗi electron thì cô đơn [8] và có cá tính mạnh mẽ, nhưng kỳ lạ thay ở một hoàn cảnh đặc biệt nào đó (nhiệt độ thấp) chúng lại dễ kết cặp với nhau, mỗi cặp tuy mảnh mai nhưng khi tụ họp đông đảo lại hòa đồng để vận hành như một dòng chảy thuần khiết của muôn ngàn điện tích và trở nên siêu dẫn.


Mặc dù photon có khối lượng khác 0, đối xứng chuẩn trong siêu dẫn điện từ  không hề bị phá vỡ, nó chỉ bị che khuất đi bởi các cặp Cooper ở trạng thái căn bản, hiện tượng siêu dẫn là một biểu hiện sự phá vỡ tự phát của tính đối xứng chuẩn.


Sắt-từ, Siêu dẫn điện từ  là hai thí dụ của SBS.
Hiện tượng SBS giúp ta hiểu tại sao boson chuẩn photon, trên nguyên tắc phải không có khối lượng, cuối cùng lại hóa ra  khối lượng trong hiện tượng siêu dẫn. Nó quả là một diệu pháp khiến cho hai boson chuẩn không khối lượng của lực yếu W, Z  dựa vào để có khối lượng.
Nhưng mang khối lượng cho boson chuẩn chưa đủ, hãy còn một vướng mắc cuối phải vượt qua để cho cơ chế BEH được nhất quán và chính xác trên nguyên tắc. Thực thế,  một định lý do J. Goldstone khám phá ra, theo đó thì hậu quả tất yếu của SBS là phải xuất hiện một hạt không khối lượng, không spin, được gọi là boson Nambu–Goldstone (NG). Ta có thể cảm nhận bằng trực giác định lý Goldstone khi quan sát cậu nhỏ trên vành nón. Cậu chẳng cần mất một chút năng lượng nào mà vẫn có thể di chuyển dễ dàng suốt quanh vành nón vì bất kỳ trạng thái căn bản nào trên vành nón cũng đều giống hệt nhau. Không cần một chút năng lượng nào để biến chuyển thì cũng tựa như dựa vào tác động của một hạt nhạt phèo, không khối lượng, không spin, đó chính là boson NG mà thực nghiệm có thể dễ dàng phát hiện, nếu có thật. Nhưng phiền toái thay, chẳng ai thấy bóng vía của boson NG hiện ra bao giờ cả, nó thực là một di sản cồng kềnh của SBS cần phải loại bỏ.
P. Higgs và đồng nghiệp đã thành công trong cách chứng minh được sự triệt tiêu này. Ta có thể tóm tắt nôm na là họ đạt hai đích với một mũi tên qua hình ảnh boson chuẩn khởi đầu nhẹ tênh (không khối lượng) đã nuốt chửng boson NG để cuối cùng trở thành W, Z nặng nề của lực yếu. Không những mang khối lượng cho W, Z, trường Higgs cũng mang khối lượng cho quark và lepton với đặc điểm là khối lượng của chúng tỷ lệ thuận với lực tương tác với boson Higgs. Với trường Higgs thì quark top tác động mạnh mẽ nhất, neutrino hay electron lại quá hững hờ, còn photon thì hoàn toàn vô cảm.



Ý nghĩa của hiện tượng Higgs như lời tạm kết


Nếu hiện tượng vừa khám phá ở CERN được kiểm chứng sau này phù hợp với những đặc tính của boson Higgs (spin 0, những kiểu phân rã và sản xuất đúng như tiên đoán của Mô Hình Chuẩn) thì chúng ta đang chứng kiến một chương cũ sắp khép và một trang sử mới đang ló dạng trong vật lý. Khép chương cũ vì đã hoàn tất một đoạn đường dài là tất cả 17 hạt cơ bản trong Hình 1 đều được thực nghiệm khám phá hết cả, không còn gì thiếu sót. Điều này  khẳng định hơn bao giờ hết sự vững chắc của Mô Hình Chuẩn, một lý thuyết nền tảng, một hệ hình mà từ đây mọi phát triển sau này đều phải dựa vào để phát triển xa hơn nữa.

Chương mới, vì cơ chế BEH thực sự lên ngôi, nó nhất quán, chính xác trên lý thuyết lại được thực nghiệm khẳng định. Cơ chế  BEH này có thể ảnh hưởng sâu rộng đến nhiều ngành khác, nó được sinh ra qua một hôn phối đặc biệt giữa hai ngành xa lạ: vật lý chất đông đặc (siêu dẫn) và vật lý hạt (lực yếu của neutrino), boson Higgs là hình ảnh của cặp Cooper liên kết hai electron. Cách tiếp cận quy giản của các nhà vật lý hạt qua sự tìm kiếm phương trình cơ bản, đã huởng thụ cách tiếp cận mở, hiệu dụng thiên về tìm kiếm xấp xỉ những nghiệm số của phương trình Maxwell đã biết sẵn, quả là một bài học phong phú của phương pháp luận.



Chương mới, vì đây là lần đầu xuất hiện một hạt cơ bản duy nhất có spin 0 mang khối lượng cho vạn vật. Các hạt khác đều có spin khác 0: vật chất tượng trưng bởi  quark và  lepton có  spin ½, boson chuẩn (lực nối kết và truyền tải thông tin để cho các viên gạch cơ bản của vật chất tương tác với nhau) có spin 1.


Trường vô hướng Higgs tràn ngập trạng thái chân không của vũ trụ ngay từ thủa sơ khai Big Bang, tương tác đặc biệt của nó với vật chất là để cung cấp khối lượng cho chúng. Càng tương tác mạnh bao nhiêu với trường Higgs, vật chất lại càng được tăng khối lượng bấy nhiêu, tựa như người không biết bơi, càng vùng vẫy mạnh càng nặng thêm mà chìm xuống, càng bất động im hơi càng nổi bềnh bồng. Quan điểm về khối lượng có thể đổi khác từ nay, sự tương tác trao đổi trong chân không lượng tử, một vũ đài náo nhiệt, mới chính là gốc nguồn của khối lượng và năng lượng.


Một câu hỏi để tạm kết: Tuy trường Higgs mang khối lượng cho vạn vật,  nhưng cái gì mang lại cho chính boson Higgs cái khối lượng 126 Gev/ cmà LHC vừa khám phá ra? Đừng quên là khoảng 96% năng-khối lượng trong toàn vũ  (mệnh danh là  năng lượng tối và  vật chất tối) hãy còn ở ngoài sự hiểu biết hiện nay của con người.


Một chân trời mới “hậu Mô Hình Chuẩn” đầy triển vọng đang đón chờ đóng góp, giải đáp bởi thế hệ trẻ.

[1] Máy gia tốc LHC ( Large Hadron Collider) tốn kém khoảng bốn tỷ euros, chu vi 27 km nằm sâu hơn 100 m dưới mặt đất, công xuất điện cung cấp cho LHC hoạt động là 120MW, tương đương với nhu cầu điện của toàn thể quận Genève. Phụ thêm hai máy khổng lồ để dò tìm hạt: CMS dài 21m, đường kính 15m, nặng 12500 tấn, ATLAS dài 46m,  đường kính 25m, nặng 7000 tấn.

[2] Nhóm đối xứng giản dị nhất diễn  tả bởi hàm eiα(x)  là nhóm quay U (1) trong mặt phẳng.

Đi xa hơn, quan sát cách vận hành cũng như tác động giống hệt nhau của hai hạt proton và neutron trong các hạt nhân nguyên tử đưa Heisenberg đến khái niệm nhóm đối xứng SU(2) chi phối chúng. 

Murray Gell-Mann  nới rộng nhóm SU(2) thành nhóm đối xứng SU(3) giữa 3 vật thể (proton, neutron, hadron 
L) để sắp xếp chúng và xây dựng nên cấu trúc cũng như  tính chất của những hạt phức hợp hạ nguyên tử (gọi chung là hadron) mà các nhà thực nghiệm đã tìm thấy từ những năm  1950 mà không ai hiểu tại sao và bản chất chúng là gì. Sự phân loại và sắp xếp trật tự những hadron này bởi Gell-Mann cũng tựa như Mendeleïev trước kia đã làm với các nguyên tố hóa học rối rắm từ hydrogen đến uranium.
 

Dùng nhóm đối xứng SU(3), ông tiên đoán năm 1962 là tất yếu phải hiện hữu hạt 
W- (khối lượng của hạt này cũng đã được tính toán trước),  năm 1964 các nhà vật lý thực nghiệm tìm ra nó ở Brookhaven.
 

Ngày nay ta hiểu là tất cả các hadron đều chỉ  là trạng thái liên kết của các hạt cơ bản quark với nhau hay/và quark với phản quark, đặc biệt 
Ω-  là trạng thái  liên kết của 3 quark s.  Coi Hình 1 sơ đồ về quark. 
[3]  Tạm kể mấy thành quả kỳ diệu của công nghệ mang đến cho đời sống hàng ngày:

a-Công nghệ thông-truyền-tin với mạng lưới toàn cầu được sáng tạo và dùng đầu tiên bởi các nhà vật lý ở CERN (Centre Européen de Recherche Nucléaire) chuyên về nghiên cứu hạt cơ bản. Ðặt ở biên giới Pháp-Thụy Sĩ gần thành phố Genève với máy gia tốc LHC trong đó công nghệ siêu dẫn của điện từ được tận dụng, tạo nên những từ trường rất mạnh để đẩy những hạt electron, positron, proton cho đạt tới vận tốc gần bằng ánh sáng, nhờ đó mà tìm kiếm các hạt cơ bản cấu tạo nên vạn vật, khám phá thăm dò được bản chất cũng như các định luật tương tác của chúng. Vì hàng ngàn nhà vật lý ngành năng lượng cao này đều sinh hoạt ở nhiều quốc gia tản mát khắp địa cầu không phải lúc nào cũng có thể thường xuyên làm việc bên CERN, để dễ dàng cộng tác và trao đổi rất nhiều dữ liệu, cùng nhau phân tích tổng hợp nhanh chóng các kết quả nghiên cứu, khoảng năm 1990 đã xuất hiện mạng lưới toàn cầu. Chưa đầy mười năm sau, internet đã nhanh chóng tràn ngập thị trường thông-truyền-tin quốc tế mà điển hình là động cơ truy cập Google.    

b-Cuộc cách mạng số trong những phương tiện truyền thanh, truyền hình, quay phim, điện thoại v.v. được phát triển nhờ những khám phá về laser và chất bán dẫn mà đại diện là các linh kiện vi tính, vi điện tử, quang điện tử.    

c-Hệ thống GPS (Global Positioning System) để xác định tức khắc các địa điểm trên hoàn cầu trang bị các phương tiện vận tải, thông truyền tin. Hệ thống đó tùy thuộc căn bản vào máy đo thời gian vô cùng chính xác (đồng hồ nguyên tử khai thác sự dao động tuần hoàn của các nguyên tử vi mô) được làm ra với mục tiêu khoa học thuần túy để kiểm chứng thuyết tương đối rộng trong vũ trụ học và thiên văn. Theo thuyết này nhịp độ của đồng hồ thay đổi với sức hút của quả đất, trọng lực giảm thì tần số dao động cũng giảm theo, hay thời gian trôi nhanh lên.   

d-Công nghệ liên quan đến y tế dùng máy gia tốc của các hạt proton hay electron, laser trong giải phẫu, trị  bệnh, máy chụp hình nổi như MRI (magnetic resonance imaging), PET (positron emission tomography) trong đó hạt positron (tức phản electron)  được tận dụng để rõi theo sự biến chuyển của tế bào.    

e-Hiện tượng siêu dẫn điện-từ ở nhiệt độ thấp (từ sát 0K đến 165 K) là một đặc trưng của vật lý lượng tử. Vật liệu siêu dẫn không có điện trở, điện không bị thất tán nếu truyền tải bằng dây siêu dẫn. Hơn thế nữa, một thanh nam châm để gần một vật liệu siêu dẫn sẽ bị nâng bật ra ngoài, khác với điện từ ở điều kiện bình thường. Với những đặc tính trên và từ trường cực kỳ mạnh duới trạng thái siêu dẫn, có nhiều triển vọng cho công nghiệp của thế kỷ 21, đặc biệt trong sự sản xuất, tích trữ và chuyển vận năng lượng. Một thí dụ là khả năng điều chỉnh được sự tổng hợp nhiệt hạch với lò phản ứng nhiệt hạch quốc tế ITER xây dựng ở Cadarache miền nam nước Pháp. Ngoài ra còn phải kể đến khả năng chủ yếu của siêu dẫn trong các ngành liên quan đến điện tử (với máy tính và dữ kiện dùng vật liệu siêu dẫn), đến sinh học (với thiết bị sensor cực kỳ nhậy bén), đến vận tải (với tàu hỏa tốc hành nâng lên bởi từ trường siêu dẫn, không chạm đường ray nên tàu chạy rất nhanh lại an toàn), đến vật liệu carbon như fullerene C60, vật dẫn điện hữu cơ, đất hiếm.

[4]
 Đơn vị đo lường của spin là ħ = h/2π, h là hằng số Planck. Qua phương trình Dirac, spin ћ/2 của fermion là một đặc trưng độc đáo của vật lý lượng tử. Spin, tựa như  xung lượng góc, miêu tả tính chấtquay vòng nội tại của các hạt vi mô cơ bản (như con quay xoay chung quanh trục của nó), spin  ћ/2 h/4π nghĩa là  hạt phải quay hai vòng () mới trở lại vị trí ban đầu, điều không tưởng trong cơ học cổ điển. 

[5]
Thực ra có sáu người trong ba nhóm độc lập với nhau hầu như đồng thời cùng đề xuất dùng SBS để mang khối lượng cho boson chuẩn (lúc ấy internet chưa có để đưa bài lập tức lên mạng như ngày nay các nhà nghiên cứu thường làm). Nhóm thứ nhất gồm R. Brout và F. Englert xuất bản ngày 31/08/1964, nhóm thứ hai riêng một mình P. Higgs xuất bản ngày 19/10/1964, nhóm thứ ba gồm G. Guralnik, C. Hagen và T. Kibble xuất bản ngày 16/11/1964. Tất cả các bài đều trên tạp chí  Phys. Rev. Lett. số 13. 
 

Bài của P. Higgs thực ra được gửi cuối tháng 7 năm 1964 trước cho tạp chí Phys. Lett. ở CERN, nhưng bị từ chối ông bèn gửi sang Phys. Rev. Lett.  Người thẩm định bài của Higgs cho Phys. Rev. Lett. chính là Nambu.
 

Cần nhấn mạnh là chỉ riêng P. Higgs đã đề xuất là phải hiện hữu một hạt cơ bản mang spin 0, để cơ chế BEH này có thể kiểm chứng bởi thực nghiệm. S.Weinberg gọi hạt này là boson Higgs mà CERN vừa tìm thấy dấu vết ngày 04/07/2012.
 

[6]
 Hạt vi mô có khối lượng M ≠ 0 chỉ có thể tác động trong một khoảng cách R ≠ 0 hữu hạn (M ≠ 0 ↔ R≠ 0 vì hai đại lượng R và M bị kiềm chế bởi nguyên lý bất định Heisenberg R × M ~ ħ). Photon không khối lượng có thể truyền đi vô hạn, M= 0 ↔ R = ∞.

[7]
 John Bardeen được  2 giải Nobel vật lý, năm 1956 về transistor và năm 1972 về siêu dẫn.
 

[8]
  Mai Ninh, Truyện ngắn “Hạt điện cô đơn”

-------------------------------------------------------------------
(Vinh Thuan suu tam - 30/7/2012 - Bai goc: